Graph GPs as emulators for rebalancing Amazon's
supply chain network.

by Stefanos Eleftheriadis (stefele@)



Layman's transfers

min Z (shipping cost + missed sales penalty) + transfer cost

all demand scenarios
s.t.
inventory flow is not violated,
outbound shippings and lost sales add up to the total demand,
transferred units between an arc are upper bounded.

FCs zip2
0:100
:
[
(J:10
o T 0
\$5 /$7
M e @
Cr— $3



Design the emulator

We have a multi-output regression:

F(%xn) = {ynv }y V is the set of otuputs/arcs,
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Input features per instance (ASIN-date combination), n:

* Item properties: pkg, (volume/weight),

» node features:
= invj (on-hand + in-transit inventory),
= fClat/1ong (lOcation),

o outbound features: dj (demand at each node).



Construct the graph from Amazon's network
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GPs on graphs

We need to define:

!
fy : X € RV xD —YeR (glboal funtion for the vth output).

We start from:

g, : RD — R, gy(') ~ QP(O, kg(', )), (GP on one node)
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fV(Xn) = W,/T K , W, € ]RV (GP on the entire graph)
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How to choose W?

The graph's normalised adjacency matrix can act as a local smoother:

W=(I+D)'(I+A)

Mormalised Adjacency matrix of the network
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Graphs — Convolutions

graph features x,, —  nth "image"

node features XE}] —  vth "patch"

node response g, (-) —  relu(conv(+))

graph response f,(-) —  avg. pooling



ReLUs — Spherical kernels

For some weight w ~ N (0, I):

T o\ x'w B o
w) = ||x]|||w|| max(0, TllTw] ) = rmrwirrelu(x WZ.

radial  angular

Orelu (X

In the limit, a single layer NN with ReLU converges to a GP with a spherical (or zonal) kernel:

k(x,2) = Ew (0101w %)0ra(w )] = [xlz]| — (1 (m — arccos(r)) + /T~ 7)

radial e

angular

=r,mo6(t), t=%'7.

For L layers the angular part of the equivalent kernel is:

IiL(t) = Ko---0k(t).

L times



An interlude on spherical harmonics

The eigenfunctions of spherical kernels are spherical harmonics gbzn() with frequency £ and
phase m

[ 12672 40 = A6 ).

qi-

Spherical harmonics are orthogonal wrt to the uniform measure in the sphere:
O7 (%) P (x) AQ = 870Gy -
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The Addition theorem connects sphercial harmonics of frequency £ to Gegenbauer
polynomials of order £:
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Spherical kernels — Polynomials

From Mercer's + Addition thm:

oo N(£,d) 00
m m ¢ +Q a
k(x,z) = ryr, E E MN®y (x)B) (z) = Ters E > )\ng( )(xTz).
(=0 m=0 =0

Hint! The eigenvalues decay polynomially as we move to higher frequencies.



Spherical kernels — Polynomials

From Mercer's + Addition thm:

oo N(£d) 00
m m ¢ +Q a
k(x,z) = ryr, E E MN®y (x)B) (z) = Ters E > )\ng( )(xTz).
(=0 m=0 =0

Hint! The eigenvalues decay polynomially as we move to higher frequencies.

k(x,z) = r,r, Z —f_ﬂCg(a) (x'z).
=0



Spherical kernel with "continuous” depth

Eigenvalue decay in 3D
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Back to (sparse) GPs

Inducing points

Inducing features

u = f(2) u=(f, ¢ )n
cov(f(x),u) cov(f(x),u)
= k(x,2) = ¢Zn(x)
cov(u,u’) cox;(tg, u’)

_ k(z,z') _ OuOmm
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Variational approximation

ELBO = Eys() [log p(y|f(-))] — KL [q(f(:))|[p(f(-))]

q(fu(-)) = GP (mu(-), 0u(-,))
my(+) = kf,,(’, Z)K_lp,,, — ¢(')Tdiag()‘)ﬂ'v
oy () = kg, () — kg, (- Z)K " ky (Z, ) + kg, (- Z)K 'S, K 'ky, (Z, )
— kyp () — ¢() ' diag(A)(-) + ¢(-) ' diag(A)S, diag(A)é(-),

with kg (-,-) = w,k, (-, )w, and ks (,Z) =wyk,(-,2Z).



The emulator in action
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Dive into each arc

transfers APE per arc on 1 week test set (223 arcs, 124 FCs)

zero MAPE: 1
BN graphGP wMAPE: 0.294




Same plot ordered by volume (descending)

transfers APE per arc on 1 week test set (223 arcs, 124 FCs)

zero MAPE: 1
= graphGP wMAPE: 0.294




Best vs worst performing arc

HIL3-=5IL2 (ground truth) HIL3->5IL2 (samples)
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Important papers

e Ng et al. Bayesian Semi-supervised Learning with Graph Gaussian Processes.

o Kipf & Welling. Semi-Supervised Classification with Graph Convolutional Networks.

» van der Wilk et al. Convolutional Gaussian Processes.

e Dutordoir et al. Sparse Gaussian Process with Spherical Harmonic features.

 Bietti & Bach. Deep Equals Shallow for ReLU Networks in Kernel Regimes.

» Belfer et al. Spectral Analysis of the Neural Tangent Kernel for Deep Residual
Networks.



