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Layman's transfers

min ∑
all demand scenarios

(shipping cost + missed sales penalty) + transfer cost

s. t.

inventory flow is not violated,

outbound shippings and lost sales add up to the total demand,

transferred units between an arc are upper bounded.



Design the emulator

We have a multi-output regression:

where

Input features per instance (ASIN-date combination), :

Item properties:  (volume/weight),

node features:

 (on-hand + in-transit inventory),

 (location),

outbound features:  (demand at each node).

f(xn) = {yn,v}Vv=1, V is the set of otuputs/arcs,
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Construct the graph from Amazon's network



GPs on graphs

We need to define:

We start from:

fν : X ∈ R
V ′×D → Y ∈ R (glboal funtion for the νth output).

gν : RD → R,    gν(⋅) ∼ GP(0, kg(⋅, ⋅)), (GP on one node)
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How to choose ?

The graph's normalised adjacency matrix can act as a local smoother:

W

W = (I + D)−1(I + A)



Graphs  Convolutions

graph features th "image"

node features th "patch"

node response    relu(conv )

graph response    avg. pooling

→

xn → n

x
[v]
n → v

gν(⋅) → (⋅)

fν(⋅) →



ReLUs  Spherical kernels

For some weight :

In the limit, a single layer NN with ReLU converges to a GP with a spherical (or zonal) kernel:

For  layers the angular part of the equivalent kernel is:

→

w ∼ N (0, I)
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An interlude on spherical harmonics

The eigenfunctions of spherical kernels are spherical harmonics  with frequency  and

phase 

Spherical harmonics are orthogonal wrt to the uniform measure in the sphere:

The Addition theorem connects sphercial harmonics of frequency  to Gegenbauer
polynomials of order :
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Spherical kernels  Polynomials

From Mercer's + Addition thm:

Hint! The eigenvalues decay polynomially as we move to higher frequencies.
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Spherical kernels  Polynomials

From Mercer's + Addition thm:

Hint! The eigenvalues decay polynomially as we move to higher frequencies.
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Spherical kernel with "continuous" depth



Back to (sparse) GPs

Inducing points Inducing features

u = f(z) u = ⟨f, ϕm
ℓ ⟩H

cov(f(x), u)

= k(x, z)

cov(f(x), u)

= ϕm
ℓ (x)

cov(u, u′)

= k(z, z
′)
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=
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Variational approximation

ELBO = Eq(f(⋅)) [log p(y|f(⋅))] − KL [q(f(⋅))||p(f(⋅))]

q(fν(⋅)) = GP (mν(⋅), σν(⋅, ⋅))

mν(⋅) = kfν
(⋅, Z)K

−1μν → ϕ(⋅)⊤diag(λ)μν

σν(⋅, ⋅) = kfν
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−1kfν

(Z, ⋅) + kfν
(⋅, Z)K
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(⋅, Z) = w⊤
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The emulator in action



Ugly data, good results



Dive into each arc



Same plot ordered by volume (descending)



Best vs worst performing arc
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